
© Centre For Software Engineering 2003
Page 1 of 2

Effective Object-Oriented Design
Outline Learn how to design high quality OO solutions using Test Driven Development

(TDD), refactoring and patterns. The course is lab based, with every new concept
backed up by a comprehensive set of exercises that allow you to validate your
understanding of the material. Participants will work in pairs.

Pre-requisites Previous development experience with Java and the Unified Modelling Language
(UML).
Alternatively, attendance at our "Effective Object-Oriented Programming Using
Java" and "UML Notation" courses would satisfy this pre-requisite.

Duration 4 days
Daily Schedule 9.30am - 5.30pm
Maximum attendees 10

Module Objectives Minutes Type
1 "Hello World" Unit Test • Gain familiarity with the JUnit

testing tool through writing your first
unit test.

• Learn how to run several tests
together.

• Learn about the development tools
that you will be using namely JUnit,
Ant, and the IDE.

30 Lab

2 Simple Test Driven
Development Example

• Gain insights into Test Driven
Development though a simple
example that illustrates the essential
elements of the approach.

60 Presentation

3 Test Driven Development
Exercise

• Use the TDD approach for an
exercise. (This will include time for
discussing the different solutions and
issues that were raised for you during
the exercise.)

120 Lab

4 Refactoring Introduction • Gain familiarity with the refactoring
technique.

• Undertake some initial code
refactorings assisted by a refactoring
tool.

30 Lab

5 Why Refactor? – 'Bad
Code Smells'

• Learn bad code smells and the types
of refactorings they lead to. (The
trick with refactoring is to know
when to do it and which refactoring
is appropriate.)

60 Presentation

6 Refactoring Exercise • Learn how to remove complexity
from existing code using refactoring.
This exercise will allow you to
refactor poor code with the safety net
of a bank of pre-existing unit tests.

90 Lab

7 Introduction to Mock
Objects

• Learn how to unit test your code
when it needs to collaborate with
complex resources such as databases
and application servers.

• Write a simple unit test that tests
against a mock version of a real

30 Lab

© Centre For Software Engineering 2003
Page 2 of 2

resource.
8 Mock Objects • Learn about the why and when of

Mock Objects.
• Learn about Mock Object related

testing patterns such as self-shunting
and control flow testing.

• Understand how Aspect Oriented
Programming can be used to replace
real objects with their mock cousins
for unit testing purposes.

60 Presentation

9 Mock Objects Exercise • Refactor code to use mock JDBC
classes instead of the real thing.

120 Lab

10 Design Exercise • Use the techniques acquired in the
previous modules to tackle a non-
trivial design problem.

• Review the techniques learnt and
utilised in the previous modules.

360 Lab

11 Anatomy of a Design • Learn how design patterns provide a
language that allows designers to
communicate and reason with each
other about their designs. This is
achieved by studying a pattern rich
application.

60 Presentation

12 Design Patterns and TDD • Learn how patterns 'emerge' in a
design, when a Test Driven
Development (TDD) approach is
taken.

60 Presentation

13 Acceptance Testing
Introduction

• Learn how to write user acceptance
tests using the FIT open-source
testing tool.

30 Lab

14 Acceptance Testing • Learn how to get users to express
their requirements as Acceptance
tests.

• Learn how to drive your
development with these tests.

• Learn how FIT complements
commercial GUI testing tools.

60 Presentation

15 Acceptance Testing
Exercise

• Taking the role of a customer, learn
how to specify requirements in the
form of user acceptance tests.

150 Lab

16 Designing the User
Interface

• Learn how to deal with the evolution
of the user interface when using a
Test Driven Development (TDD)
approach.

60 Presentation

17 Designing for Concurrency • Learn the fundamentals of dealing
with concurrency in a TDD context.

120 Presentation

18 Summary • Ask questions and raise issues on
what has been learnt during the
course.

60 Discussion

