
Technical Briefing

© 2000 Centre for Software Engineering Briefing Note No. 11 Ver. 1 December 2000

eXtreme Programming in Context

Introduction
In this briefing we provide an objective overview of a new lightweight development process called
eXtreme Programming (XP). Specifically we study the process in the following context:

eXtreme Programming (XP) is a method that attempts to tackle the above problems head on. With XP
the application is built in small “one to three week” iterations. During each iteration the team
implements a set of features arrived at and refined through conversation between the developers and
the on-site customer. It is the customer’s responsibility to write the functional tests. It is the
developer’s responsibilities to estimate the time and risk associated with each feature
implementation, and to implement the features in such a way that the simplicity and correctness of
the design is not compromised.

Lets take a black box view of the method from the point of view of the Customer before we look at
how the developer meets the customer’s requirements.

• Requirements Change: It is the norm for customer requirements to be vague,
incomplete and subject to change. These characteristics are more prevalent today than
ever before with the Web continuously reshaping underlying business models. To try
and pin the user down to a fixed set of well-defined requirements can be dangerous and
counter productive. The process should allow the developer and customer to explore
the problem domain and solution space, learning from each other as they do so.

• Expressive Environments: With modern Object-Oriented (OO) languages such as Java
and Eiffel and their associated class libraries and environments, we now are able to
translate requirements into code quicker than ever before. If we also adopt a
disciplined OO development approach to design, we can easily implement new
functionality without impacting on the existing design quality and correctness of an
application.

• Rapidly Changing Technology: Modern e-business focused technologies such as the
Java 2 platform, Corba, and Microsoft’s COM and .NET technologies are creating a
phenomenon known as the disappearing programmer. Application designers and
architects need to program in these technologies, in order to be able to design
meaningful solutions instead of just bubble diagrams.

The XP Customer
Kent Beck, one of the creators of XP, has put forward Conversation as a new paradigm for software
development. Features, called user stories, are scribbled onto an index card and put into “cold
storage” until a decision is made to implement them in an iteration. An iteration should last between
one and three weeks. The stories are reanimated though the conversation between the customer and
developer. A feature’s development can then be viewed as a conversation between the developer and
the customer, that starts with an index card and lasts until the functional tests have completed
successfully for the feature.

The primary role of the customer is to be on hand to guide the development process. Ideally the
customer should be on-site. The unavailability of a customer provides a difficulty for XP. The lack
of daily face to face communication between developer and customer makes the balance shift back
towards the capturing of user requirements at a particular point of time, i.e. development becomes an
asynchronous message passing process. This is fine if the models are complete, correct, and easily
understood and developers do not have to refer back to the customer on any points. When the
developer has to stop in mid development because they do not have sufficient information, the
development clock does not stop ticking. Under time pressure the developer may be tempted to
proceed based on unsafe assumptions.

eXtreme Discipline
Complexity is the enemy of software quality. The XP developer’s energy is concentrated on
producing the simplest solution for each user requirement. XP’s touchstone for software quality is
duplicate logic. Other warning signs include long function bodies, long parameter lists, and verbose
code comments. Writing about quality, Beck says, "The only possible values are 'excellent' and
'insanely excellent', depending on whether lives are at stake or not".

It seems a lot to ask of developers, especially novice developers, to adhere to this model of pure
simplicity. This is where XP provides a set of interdependent practises and techniques, that makes
the goal of consistently correct and elegant software achievable, even for teams with their fair share
of inexperienced programmers.

Refactoring
Refactoring has been defined by Martin Fowler as “the process of changing a software system in such
a way that it does not alter the external behaviour of the code yet improves its internal structure. You
learn from building the system how to improve the design. The resulting interaction leads to a
program with a design that stays good as development continues.”

With refactoring you look on each change as an opportunity to improve the existing design of the
system. This is the opposite of the natural software product life cycle which gradually sees changes
over time chipping away at the quality and cohesion of the product, until the product can no longer
tolerate any changes and it has to be dumped.

The customer also has very specific duties to fulfil, namely:

• Selecting the features that will be implemented in an iteration. This selection will be
based on their own needs, taking into account the time estimates and technical risks
identified by the developers.

• Providing the developers with all the domain information they need to implement a
feature.

• Writing the functional tests to ensure that the feature performs as expected.

The Refactoring based approach has grown out of the experience of software framework developers.
A framework is a skeletal piece of software that provides core functionality for a particular
application domain. Frameworks offer the biggest reuse potential, but the downside is they are very
difficult to develop, and almost impossible to develop from scratch. Frameworks tend to evolve over
time, and one of the key techniques for allowing them to evolve is constant refactoring. If we are to
build solutions with the maximum reuse potential then the industry lesson is that you have to adopt a
refactoring based approach to development.

How do you do refactoring and how does it impact on the development process? Basically, a
refactoring stage needs to be built into each small system change. Instead of the developer rushing in
and making the change, they adopt the following strategy. “When you find you have to add a feature
to a program, and the program’s code is not structured in a convenient way to add the feature, first
refactor the program to make it easy to add the feature, then add the feature”.

Unit Testing
Kent Beck and Erich Gamma have nicely summed up why programmers find testing painful - “Every
programmer knows they should write tests for their code. Few do. The universal response to “Why
not?” is “I’m in too much of a hurry.” This quickly becomes a vicious cycle - the more pressure you
feel, the fewer tests you write, the less productive you are and the less stable your code becomes.
The less productive and accurate you are, the more pressure you feel."

With refactoring you are constantly changing things that are already working. You therefore need to
be continuously running regression tests to check you have not broken any of the code with a
refactoring. XP advocates a test-first approach to software development. Before you write a piece of
code you must first write the test, see the test fail and then write the code that makes the test work.
This is a variation on the theme of specifying what you want to achieve before you consider how you
will implement it.

What you need to make strong unit testing a reality is tool support that allows you to quickly write
and run your own tests. The tests should be self-checking. Basically you want a scenario where you
can push a button, your tests will run in a fraction of a minute, and you will be told they all
succeeded, or if there was a failure which test failed. The XP camp has come up with an object
oriented framework called XUnit that allows you to do this. The Java variant of this framework is
known as JUnit. It is a simple and effective tool, with the added benefits that it is free and open
source, so you can easily customise it to suit your particular testing approach.

XP has a lot to say about the importance of testing, but precious little on how to ensure your testing is
comprehensive and complete or how to track the dependencies between different tests. For adding
rigour and completeness to your tests you may wish to tap into the existing extensive testing
literature. Also the unit tests provide an intuitive description of the expected behaviour of a function
but not necessarily a complete picture. A complementary technique known as Design By Contract,
allows you to specify system behaviour more precisely and completely.

Collective Ownership and Continuous Integration
A refactoring based approach implies that team members can change each others code at any time.
This has the benefit that complex code does not hang around for very long as it soon gets factored
into simpler code. It also drives out the need for continuous integration. XP development teams
integrate at least once a day. Ideally all unit tests should be run every time someone checks back in a
piece of code, which could mean that system integration is done every few minutes.

Eight-Hour Burn
XP view software development as a team centred process, if all the members are not contributing to
the best of their abilities then disaffection with each other and the game plan will soon set in. The
ideal is for people to work only while they are fresh and enjoying their work. The latest XP catch
phrase for this concept is the eight-hour burn.

Pair Programming
With the goal of development being a lean, elegant application that can flex in anyway the customer
wants it to go, how does the process accommodate novice programmers? The XP technique here is
for programmers to pair off with each other on tasks. An XP task should not take longer than a day to
complete. Pair Programming allows new programmers to learn from more experienced developers at
their own pace while making an ever increasing number of contributions, until they are ready to
accept responsibilities for specific tasks.

XP Concerns
Before we jump off our whistle stop tour of XP, lets run through some of the concerns that people
have with the approach.

What about taking a big picture view?
With XP you do the simplest thing to solve today’s problem and rely on refactoring to grow a quality
design over time. The XP contention is that once you start building for the future then you are
adding unnecessary complexity and reducing the flexibility of the system. "If you believe that the
future is uncertain, and you believe that you can cheaply change your mind, then putting in
functionality on speculation is crazy, put in what you need when you need it", writes Beck.

Where are the models and documentation?
XP puts emphasis on code expressiveness and flexibility. With XP we might use models to help us
sketch a solution. This is in line with the current popularity of round trip engineering tools that allow
the model and code to be kept in sync with each other. Also tools such as JavaDOC allow us to
generate documentation straight from program comments.

Where is the architect?
With XP the developer is empowered to contribute to the architecture as development progresses.
This is a natural consequence of working with an OO platform such as Java, where the associated
class libraries such as Java Servlets, Remote Method Invocation (RMI), and the utility classes can
only be fully mastered by people who spend time developing with them.

What about distributed development?
Ideally developers and customers should be at the same location. If they are physically separate then
you are impeding one of the basic XP tools: conversation.

Pair Programming has many other benefits apart from helping to train in new team
members.

• It encourages team interaction and knowledge dissemination
• It speeds up development, people working in pairs tend to avoid going down blind

alleys

Technical Briefing Notes are issued on a range of software engineering topics as an aid to software developers,
project leaders and managers. The intention is to provide a ‘status report’ on the state of the art (and/or the state of

practice) in relation to particular aspects of software engineering. In addition they aim to highlight, where
appropriate, a likely roadmap on a time horizon for future developments of the technology.

Centre for Software Engineering Ltd, Dublin City University Campus, Dublin 9, Ireland.
Telephone: +353 1 7005750 Fax: +353 1 7005605 Email: admin@cse.dcu.ie

Summary
In conclusion, whether you agree with XP’s status as a full-fledged software engineering process or
not, is not really the point. The point is that XP highlights the core practises that your team must get
right if you wish to develop quality software on time while having to deal with changing
requirements. From this point of view it is of key consideration to nearly everybody engaged in
software development today.

Further Information:

WWW:
http://www.extremeprogramming.org
http://www.xprogramming.com
http://www.junit.org
http://www.eiffel.com – for information on Design By Contract

Books:
eXtreme Programming eXplained
Kent Beck, Addison Wesley ‘99

eXtreme Programming Installed
Ron Jeffries, et al, Addison Wesley 2000

Planning eXtreme Programming
Kent Beck and Martin Fowler, Addison Wesley 2000

Refactoring : Improving the Design of Existing Code
Martin Fowler, Kent Beck (Contributor), John Brant (Contributor), William Opdyke, Don Roberts
Addison-Wesley ‘99

Design Patterns, Elements of Reusable Object-Oriented Software
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides
Addison Wesley 1995

Patterns are often the endgame of a sequence of refactorings. Design patterns capture proven
effective design solutions and are defined as “descriptions of communicating objects and classes that
are customised to solve a general design problem in a particular context.”

http://www.extremeprogramming.org/
http://www.xprogramming.com/
http://www.junit.org/
http://www.eiffel.com/

	Introduction
	The XP Customer
	eXtreme Discipline
	Refactoring
	Unit Testing
	Collective Ownership and Continuous Integration
	Eight-Hour Burn
	Pair Programming

	XP Concerns
	Summary
	Further Information:
	WWW:
	Books:
	Planning eXtreme Programming

