
Technical Briefing

© Centre for Software Engineering, 1999 Briefing Note No. 2 Ver. 2 May 1999

Software Measurement

Introduction

When we go for a health check we expect the doctor to measure certain things like our pulse,
blood pressure, temperature, weight and height and then interpret these measurements along
with some more subjective measures to make an overall diagnosis. Software measurement can
act as a health check for your software project. As with a medical, it can be used to monitor the
current situation and act as an early warning of problems ahead and also to provide data to
estimate aspects of future projects.

Selecting what to measure is one of the most important issues of any measurement programme.
Collecting the wrong data is not only costly in wasted effort, it could also cost you the staff
support needed to make a measurement programme work. The data you decide to collect
should be driven by your company's business objectives.

Many texts will recommend that the number of measures initially selected be no more than five.
These are sometimes referred to as global measures i.e. they are measured across the
development life cycle and are not specific to one particular phase.

Three of the most basic measurements are:

Size

Size is a measure of project deliverables, usually code and documentation. It can be used to
measure progress and to estimate future work. There are two main techniques for measuring
code size;

• lines of code (LOC)
• number of Function Points

• size
• time - schedule/effort
• defects

The first of these, LOC, would initially seem easy to measure. However, unfortunately there is
no standard definition for a line of code. In general, it is best to keep your definition clear,
simple and, most importantly, consistent. An example is given below (Software Engineering
Metrics and Models, Conte, 1986):

However, it is still the most useful size measure when tracking progress.

Another method for defining size is to use Function Point Analysis, FPA. There are two basic
methods of Function Point Analysis:

• Albrecht, used mainly in the USA
• Mark II, used mainly in Europe (in particular the UK)

There is no consensus of opinion as to which technique is better. Work, at an international
level, to produce a set of standards in this area is near completion.

FPA claims to be language
independent by measuring the
functionality of the system and is
also independent of programming
style, therefore making it valuable
when measuring productivity.

The function point count is
available early in the life cycle and
so can be used in the estimation
process.

Documentation can be measured in, for example, words, lines or pages but again, as for code,
there must be a clear definition of the unit of measure.

0
50

100
150
200
250
300
350
400

Bid

Contra
ct

Plan
 1

Plan
 2

Plan
 3

Plan
 4

Plan
 5So

ur
ce

 S
ta

te
m

en
ts

 (t
ho

us
an

ds
)

New Code Reused Code

Figure 1 Exposing Potential Cost Growth - the disappearance of
reused code (based on a figure from CMU/SEI-92-TR-19)

A line of code is any line of program text that is not a comment or blank line,
regardless of the number of statements or fragments of statements on the line.
This specifically includes all lines containing program headers, declarations,
and executable and non-executable statements.

Time

Time is often being recorded already as part of project management activities. There are two
measures that are of interest:

Effort

Effort is best measured in hours as there are different definitions of days (how many hours in a
standard day) and weeks (what is a standard working week). It is important to record all time
including unpaid overtime.

It is also useful to record
the type of employee
e.g.

• programmer,
• consultant,
• user,
• manager

and with which activity
they were involved e.g.
requirements analysis,
testing etc. This will
provide a greater level
of granularity in analysis
reports.

Schedule

Schedule is measured in calendar time and records the completion of events like project
milestones, review, audits and deliverables. This information is of interest to both project
managers and estimators. It is important that everyone knows what is meant by the completion
of a particular event so schedules can be compared and interpreted correctly by different people.

Formalising the definitions and making them consistent across projects makes it possible to
compare projects. Problems and differences can be identified and investigated further.

Defects

Measures associated with defects can give an indication as to the perceived quality of a system.
As with time, information on defects is probably already being recorded but may not be being
analyzed to provide vital feedback on process and product quality.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Reporting Periods

St
af

fin
g

H
ou

rs
 (t

ho
us

an
ds

)

Planned
Actual

Figure 2 Effort Profile for Total System Expenditure by Month - either staff
allocated too early or more analysis effort required than estimated (based on a figure
in CMU/SEI-92-TR-21)

Technical Briefing Notes are issued on a range of software engineering topics as an aid to software developers,
project leaders and managers. The intention is to provide a ‘status report’ on the state of the art (and/or the state of

practice) in relation to particular aspects of software engineering. In addition they aim to highlight, where
appropriate, a likely roadmap on a time horizon for future developments of the technology.

Centre for Software Engineering Ltd, Dublin City University Campus, Dublin 9, Ireland.
Telephone: +353 1 7045750 Fax: +353 1 7045605 Email: admin@cse.dcu.ie

By counting and tracking problems and defects consistently it is possible to display trends and
highlight the effects of changes in the process.

Further Information:

The following is a selection of the material available in the CSE Library:

Software Metrics: A Rigorous Approach & Practical Approach (Second Edition)
by Fenton & Pfleeger ISBN 0-534-95600-9, 1997

A quantitative approach to Software Management - The ami Handbook
by Pulford, Kuntzmann-Combelles and Shirlaw ISBN 0-201-87746-5, 1996

Defining & Using Software Measures
by Software Engineering Institute Carnegie Mellon University, 1992

Applied Software Measurement
by Capers Jones ISBN 0-07032813-7, 1991

Software Metrics: Establishing a Company-Wide Program
by Grady & Caswell ISBN 0-13-821844-7, 1987

0
10
20
30
40
50
60

A B C D E F G H I

Categories of Defects

To
ta

l D
ef

ec
ts

 D
et

ec
te

d

Figure 4 Histogram of Categories of Defects
Detected - if percentages are used, inter-project
comparisons are possible (based on a figure in
CMU/SEI-92-TR-25)

0

10

20

30

40

50

E B G D C F H A

M odule ID, decre as ing s ize

D
ef

ec
ts

 p
er

 K
SL

O
C

Figure 3 Identifying Modules with High Defect
Densities - unusual modules can be selected for
examination, restructuring or redesign (based on a
figure in CMU/SEI-92-TR-22)

	Introduction
	Size
	Time
	Effort
	Schedule

	Defects
	Further Information:

