
Technical Briefing

© Centre for Software Engineering, 2000 Briefing Note No. 8 Ver. 1 April 2000

Unified Modelling Language

Origins
There have been many visual modelling languages for software systems, whether it be Yourdon, IDEF
or OMT. The obvious advantage of specifying systems visually stems from the adage, "a picture tells a
thousand words". However, visual models are useful for a number of reasons in addition to this:

In the past, Object-Oriented ∗ (OO) systems could avail of many different notations and methods when
building models. The three main ones were Booch (with its famous 'cloud' diagrams), OMT and
Objectory. In 1994, Jim Rumbaugh (lead developer for OMT) and Grady Booch joined Rational
Software Corporation. They decided to try and standardise on a notation for modelling OO systems. The
Unified Method 0.8 was born. Later, Ivar Jacobsen (from Objectory fame) joined Rational and merged
the idea of Use Cases with this Unified Method. Links with key industry players were forged with the
likes of IBM, Oracle and HP. In late 1997, the Object Management Group issued the Unified Modelling
Language (UML) 1.1 as a standard. This has since been revised into version 1.3, which was issued in
1999.

Overall structure of the notation
The first thing to note about the UML is that it is huge. There are many ways of showing the same
information and so it could be deemed as ambiguous. The various texts on the UML can be
confusing, so it might be safer to stick to the official User Guide [1], although it would be unfair to
discount the other publications. The important point is to agree within your own organisation on what
parts of the UML would be useful and how they would be used in your projects. A certain amount of
'tweaking' may be necessary for your own circumstances.

There are 9 main diagrams within the UML. These are briefly described below to give you a flavour
of what the UML is about. The purpose of this Technical Briefing is to give a broad overview of the
UML. It will not detail a process for using the UML, although these issues are mentioned. Further
Technical Briefings are planned, which will enter into the detail of specific aspects of the UML and
how to use it.

∗ Although the UML is geared towards Object Oriented (OO) systems, it can to a certain degree be used to
model systems which are not object oriented.

• Architectural design can be more easily visualised and systems (to a certain
extent) can be modelled independently from any implementation specifics.

• A model is useful to highlight elements of a system that could be reused, or
indeed where a reusable element can be 'plugged into' the system.

• The complexities of large systems especially, are more easily managed through
the use of visual models. Systems can effectively be packaged into neat morsels.

Use Case diagrams

This is a very simple illustration of a use case
diagram for a bank ATM. Use cases describe
scenarios or sequences of actions for a system. Use
case models show the externally perceived
functionality from the point of view of a 'user' of the
system. A user can be a human, another system, or a
role of a human. Use cases have been around for a
while and can also be used to assist requirements
scoping for projects that are not object oriented.

Class and Object diagrams

On the right is a simple class diagram which
shows a static data view for part of a system.
Classes can be related through associations,
aggregations and generalisations.

An object diagram is related to a class
diagram in that it shows a specific instance
of a system at run time. See left.

Sequence and Collaboration diagrams

These are referred to as interaction diagrams
and the two are very closely related. They
show the 'interaction' between objects/classes
in the system for each use case. So for the use
case "Check Balance", a sequence diagram
might look like this, see right. There may be
more than one sequence diagram for each use
case to handle any exception scenarios.

Maintain ATM

Administrator
Generate reports

Withdraw cash

Customer

Check balance

Bank

Customer

Name : String
Address : String

Add()
Delete()

Account

Balance : Real
Type : String

Debit()
Credit()
CheckBalance()

1..*

has

1..*

Name=“jdoh”
Address=“Dublin”

John’s Business:Account

Balance=2450.
4Type="Current"

Balance=-34.96
Type="Current"

John:Customer

John’s Business:Account

 : Customer : ATM : Bank : Account

insert card

request PIN

enter PIN

verify user

user OK

select check balance
find account

get balance

return balance
return balance

display balance

return card

select end

The collaboration diagram (below) essentially shows the same information in a different format. The
sequencing in this case is not implied, but is shown through a numbering system on the messages.
The use of one diagram over the other is sometimes down to personal choice.

State diagrams

State diagrams or Statecharts as they are sometimes known, can be used to show the dynamic
behaviour of a class. They should be used where a class exhibits significant dynamic behaviour.
Normally, only one state may be active at any one time (without entering the realms of concurrent
states). A possible state diagram for the class "ATM" is shown below.

 : Customer

 : ATM

 : Bank

 : Account

8: get balance

9: return balance

4: verify user
7: find account

5: user OK
10: return balance

1: insert card
3: enter PIN

6: select check balance
12: select end

2: request PIN
11: display balance

13: return card

Displaying welcome message Validating

Displaying balance

Returning card

insert card

Displaying menu

user OK

end selected

card removed
Error

user not OK

Processing withdrawal

end selected

check balance selected

withdrawal selected

Activity diagrams

These are closely related to state diagrams.
They can also be thought of as very similar to
flow charts. They can be used to show the
sequence of 'activities' in a use case. Decision
branches and parallel activities can easily be
shown. Another application of their use is in the
modelling of business processes. The diagram
on the right shows the potential activities for the
"Check Balance" use case.

Component diagrams

These are used to show
the architecture of the
code and its associated
dependencies. The
components may also
be shown packaged
into subsystems.

Request PIN

Wait for PIN entry Wait for enter
keypress

Validate PIN

Display main menu

User selects Check
balance

Display balance

User selects end

Card ejects

Display error

Card inserted

[PIN OK]

[PIN not OK]

library.dll

program.exe

main.cpp

etc.cpp

etc.cpp

Deployment diagrams

The deployment diagram may only be necessary for complex and/or distributed systems. It shows the
distribution of the software across the hardware and/or enterprise.

Extensions to the UML

As stated earlier, the UML as it stands is huge. However, there is a means of extending and
customising it if necessary via the use of stereotypes. There are already some pre-defined stereotypes
in the UML standard, but an organisation may feel the need to tweak their use of the UML and
include a few of their own stereotypes. Some pre-defined stereotypes have been applied to classes to
provide the old 'Objectory' mapped, <<entity>>, <<boundary>> and <<control>> classes. Other
stereotypes have been defined for dependency relationships such as <<Extends>> and <<includes>>.

Process issues

A standard notation such as the UML is a good start, but there needs to be a way of using that
notation to build software. This is now where the battle lies. Although there is a standard notation,
there is no standard methodology. There probably will never be a standard methodology that will suit
all organisations and projects. Obviously, with the main work on the UML being pushed from the
Rational camp, it was inevitable that they would come up with some kind of process for building
software. Their Unified Process is based on the original 'Objectory' one. Other processes are available
and include Catalysis, OPEN and perhaps DSDM, which is a RAD method.

A good entry-level process would be the Unified Process. For something more formal and slanted
towards component-based development, a better choice might be Catalysis. The OPEN process is
geared towards using OML as a notation, but it can be used with the UML too. The DSDM
Consortium in the UK is establishing a task group to look at the linkages between the UML and
DSDM. They have already released a White Paper on how to use DSDM for component-based
development.

Client 1

Client 2

Application
Server

Database
Server

LAN

LAN

LAN

Technical Briefing Notes are issued on a range of software engineering topics as an aid to software developers,
project leaders and managers. The intention is to provide a ‘status report’ on the state of the art (and/or the state of

practice) in relation to particular aspects of software engineering. In addition they aim to highlight, where
appropriate, a likely roadmap on a time horizon for future developments of the technology.

Centre for Software Engineering Ltd, Dublin City University Campus, Dublin 9, Ireland.
Telephone: +353 1 7045750 Fax: +353 1 7045605 Email: admin@cse.dcu.ie

Summary
The UML is a large beast to tame. Organisations need to decide on the parts of the UML that will be
useful to their projects. Organisations may want to utilise use cases alone for non-object oriented
projects. Activity diagrams could just be used for business process modelling. Deployment diagrams
may not be needed. Sequence diagrams may be preferred to collaboration diagrams. It may be the
case that extra stereotypes are required to customise/extend the notation for their own situation. A
company standard should be developed once a decision has been made. After this come the process
issues as highlighted earlier. It may be that your organisation could customise a process for its own
use. If this is the case then a company standard should be devised.

Further Information:
The CSE run a number of courses which address UML to varying degrees:

Overview of the UML Notation
http://www.cse.dcu.ie/cse/events/uml.html

Introduction to Object Oriented Analysis and Design using the UML
http://www.cse.dcu.ie/cse/events/ooaduml.html

OO Processes - An evaluation of current approaches
http://www.cse.dcu.ie/cse/events/ooprocess.html

Component Based Development Overview and Essentials
http://www.cse.dcu.ie/cse/events/componentov.html
http://www.cse.dcu.ie/cse/events/componentes.html

Effective Business Modelling
http://www.cse.dcu.ie/cse/events/modelling.html

A selection of books (available in the CSE library):

[1] The Unified Modeling Language User Guide
Booch, Jacobson, Rumbaugh
Addison Wesley, ISBN 0-201-57168-4

[2] UML Distilled - Applying the standard object modeling language
Fowler and Scott
Addison-Wesley, ISBN 0-201-32563-2

[3] UML Toolkit (includes CD ROM)
Eriksson and Penker
John Wiley & Sons, Inc., ISBN 0-471-19161-2

WWW:

Object Management Group - UML Resource Page: http://www.omg.org/uml/

http://www.cse.dcu.ie/cse/events/uml.html
http://www.cse.dcu.ie/cse/events/ooaduml.html
http://www.cse.dcu.ie/cse/events/ooprocess.html
http://www.cse.dcu.ie/cse/events/componentov.html
http://www.cse.dcu.ie/cse/events/componentes.html
http://www.cse.dcu.ie/cse/events/modelling.html
http://www.omg.org/uml/

	Origins
	Overall structure of the notation
	Use Case diagrams
	Class and Object diagrams
	Sequence and Collaboration diagrams
	State diagrams
	Activity diagrams
	Component diagrams
	Deployment diagrams

	Summary
	Further Information:
	http://www.cse.dcu.ie/cse/events/modelling.html
	WWW:

